import xarray
import numpy as np
from scipy.interpolate import interpn
from pyproj import Geod
[docs]
class Dataset(xarray.Dataset):
"""Sub class of `xarray.Dataset <https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html>`__
"""
__slots__ = ()
def __init__(self, data_vars, coords, attrs=None) -> None:
super().__init__(data_vars, coords, attrs)
[docs]
@classmethod
def from_xarray(cls, dataset):
ds = cls(dataset.data_vars, dataset.coords)
return ds
[docs]
def interp_dep(self, depth:float, field:str, samp_interval=0):
"""Interpolate map view with given depth
:param depth: Depth in km
:type depth: float
:param field: Field name in ATT model data
:type field: str
:param samp_interval: Sampling interval, defaults to 0
:type samp_interval: int, optional
:return: xyz data with 3 columns [lon, lat, value]
:rtype: :class:`numpy.ndarray`
"""
if field not in self.data_vars.keys():
raise ValueError('Error field name of {}'.format(field))
# resample self of xarray with given interval of ``samp_interval``
if samp_interval > 0:
resampled = self.isel(t=slice(0, None, samp_interval), p=slice(0, None, samp_interval))
else:
resampled = self
idx = np.where(resampled.coords['dep'].values == depth)[0]
if idx.size > 0:
offset = 0
data = np.zeros([resampled.coords['lat'].size*resampled.coords['lon'].size, 3])
for i, la in enumerate(resampled.coords['lat'].values):
for j, lo in enumerate(resampled.coords['lon'].values):
data[offset] = [lo, la, resampled.data_vars[field].values[idx[0], i, j]]
offset += 1
else:
rad = 6371 - depth
points = np.zeros([resampled.coords['lat'].size*resampled.coords['lon'].size, 4])
offset = 0
for _, la in enumerate(resampled.coords['lat'].values):
for _, lo in enumerate(resampled.coords['lon'].values):
points[offset] = [rad, la, lo, 0.]
offset += 1
points[:, 3] = interpn(
(resampled.coords['rad'].values,
resampled.coords['lat'].values,
resampled.coords['lon'].values),
resampled.data_vars[field].values,
points[:, 0:3]
)
data = points[:, [2, 1, 3]]
return data
[docs]
def interp_sec(self, start_point, end_point, field:str, val=10.):
"""Interpolate value along a cross section
:param start_point: start point with [lon1, lat1]
:type start_point: list or tuple
:param end_point: end points with [lon2, lat2]
:type end_point: list or tuple
:param field: Field name in ATT model data
:type field: str
:param val: interval between successive points in km
:type val: float
:return: xyz data with 5 columns [lon, lat, dis, dep, value]
:rtype: :class:`numpy.ndarray`
"""
# Initialize a profile
g = Geod(ellps='WGS84')
az, _, dist = g.inv(start_point[0],start_point[1],end_point[0],end_point[1], return_back_azimuth=True)
sec_range = np.arange(0, dist/1000, val)
r = g.fwd_intermediate(start_point[0],start_point[1], az, npts=sec_range.size, del_s=val*1000)
# create points array
points = np.zeros([sec_range.size*self.coords['dep'].size, 5])
offset = 0
for i, lola in enumerate(zip(r.lons, r.lats)):
for _, rad in enumerate(self.coords['rad'].values):
points[offset] = [rad, lola[1], lola[0], sec_range[i], 0.]
offset += 1
# Interpolation
points[:, 4] = interpn(
(self.coords['rad'].values,
self.coords['lat'].values,
self.coords['lon'].values),
self.data_vars[field].values,
points[:, 0:3],
bounds_error=False
)
points[:, 0] = 6371 - points[:, 0]
data = points[:, [2, 1, 3, 0, 4]]
return data