Source code for pytomoatt.attarray

import xarray
import numpy as np
from scipy.interpolate import interpn
from pyproj import Geod

[docs] class Dataset(xarray.Dataset): """Sub class of `xarray.Dataset <https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html>`__ """ __slots__ = () def __init__(self, data_vars, coords, attrs=None) -> None: super().__init__(data_vars, coords, attrs)
[docs] @classmethod def from_xarray(cls, dataset): ds = cls(dataset.data_vars, dataset.coords) return ds
[docs] def interp_dep(self, depth:float, field:str, samp_interval=0): """Interpolate map view with given depth :param depth: Depth in km :type depth: float :param field: Field name in ATT model data :type field: str :param samp_interval: Sampling interval, defaults to 0 :type samp_interval: int, optional :return: xyz data with 3 columns [lon, lat, value] :rtype: :class:`numpy.ndarray` """ if field not in self.data_vars.keys(): raise ValueError('Error field name of {}'.format(field)) # resample self of xarray with given interval of ``samp_interval`` if samp_interval > 0: resampled = self.isel(t=slice(0, None, samp_interval), p=slice(0, None, samp_interval)) else: resampled = self idx = np.where(resampled.coords['dep'].values == depth)[0] if idx.size > 0: offset = 0 data = np.zeros([resampled.coords['lat'].size*resampled.coords['lon'].size, 3]) for i, la in enumerate(resampled.coords['lat'].values): for j, lo in enumerate(resampled.coords['lon'].values): data[offset] = [lo, la, resampled.data_vars[field].values[idx[0], i, j]] offset += 1 else: rad = 6371 - depth points = np.zeros([resampled.coords['lat'].size*resampled.coords['lon'].size, 4]) offset = 0 for _, la in enumerate(resampled.coords['lat'].values): for _, lo in enumerate(resampled.coords['lon'].values): points[offset] = [rad, la, lo, 0.] offset += 1 points[:, 3] = interpn( (resampled.coords['rad'].values, resampled.coords['lat'].values, resampled.coords['lon'].values), resampled.data_vars[field].values, points[:, 0:3] ) data = points[:, [2, 1, 3]] return data
[docs] def interp_sec(self, start_point, end_point, field:str, val=10.): """Interpolate value along a cross section :param start_point: start point with [lon1, lat1] :type start_point: list or tuple :param end_point: end points with [lon2, lat2] :type end_point: list or tuple :param field: Field name in ATT model data :type field: str :param val: interval between successive points in km :type val: float :return: xyz data with 5 columns [lon, lat, dis, dep, value] :rtype: :class:`numpy.ndarray` """ # Initialize a profile g = Geod(ellps='WGS84') az, _, dist = g.inv(start_point[0],start_point[1],end_point[0],end_point[1], return_back_azimuth=True) sec_range = np.arange(0, dist/1000, val) r = g.fwd_intermediate(start_point[0],start_point[1], az, npts=sec_range.size, del_s=val*1000) # create points array points = np.zeros([sec_range.size*self.coords['dep'].size, 5]) offset = 0 for i, lola in enumerate(zip(r.lons, r.lats)): for _, rad in enumerate(self.coords['rad'].values): points[offset] = [rad, lola[1], lola[0], sec_range[i], 0.] offset += 1 # Interpolation points[:, 4] = interpn( (self.coords['rad'].values, self.coords['lat'].values, self.coords['lon'].values), self.data_vars[field].values, points[:, 0:3], bounds_error=False ) points[:, 0] = 6371 - points[:, 0] data = points[:, [2, 1, 3, 0, 4]] return data